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Distributed optimization

A network of agents cooperatively solve a
global optimization problem, where

each agent i has a local private
objective fi(x)

all agents collaborate together to find
the solution to minimize f(x)

local information exchange via the
underlying communication network

min
x∈Rp

f(x) =
n∑

i=1
fi(x).1.2. Information sharing in multi-agent systems 3
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Figure 1.1: (a) An example of an undirected graph G. (b) An example of assigning a
direction to each edge of G.
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Figure 1.2: Two agents have different communication ranges and are in different positions.

there are two ways to explain the interaction between these two agents. The first one is that
agent v1 could receive the information that broadcasted by agent v2 but opposite operation
does not hold. The second one is agent v2 could actively sense agent v1’s information, such
as position, but agent v1 cannot actively sense agent v2’s information. In graph theory, the
first explanation is described by there is a directed edge from agent v2 to agent v1 but the
edge with opposite direction does not exists, and the second explanation is described by
there is a directed edge from agent v1 to agent v2 but the edge with opposite direction does
not exists.

Another constraint is about the channel performance. Communication is done using
wireless radios in a shared channel. The performance of this channel is closely related
to quantization error, time delays, bandwidth constraint, data rate constraint, data packet
dropout, and noise. These considerations degrade the ability of agents to successfully
coordinate their actions, unless one increases the cost and complexity of the supporting
communication equipments.

The third constraint is that there is energy constraint for communication. Sensors

An important component of many machine learning techniques
with data parallelism, e.g., deep learning and federated learning
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Applications

(Images are from the Internet.)
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Motivation

Existing algorithms
Continuous- and discrete-time distributed algorithms

Existing result
A standard assumption for proving exponential/linear convergence
of existing distributed algorithms is

strong convexity of the cost functions

Question
Could strong convexity be relaxed?
For example, quadratic functions may be not strongly convex.

Answer in our paper
Yes, it can be relaxed by the restricted secant inequality condition.
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Restricted secant inequality condition (1/2)
Let f(x) : Rp 7→ R be a differentiable function, f∗ = minx∈Rp f(x),
X∗ = arg minx∈Rp f(x), and xp is the projection of x onto the set X∗.
Strong Convexity (SC): For all x and y,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2 ‖y − x‖
2

Essential Strong Convexity (ESC): For all x and y with xp = yp,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2 ‖y − x‖
2

Weak Strong Convexity (WSC): For all x,

f∗ ≥ f(x) + 〈∇f(x), xp − x〉+ µ

2 ‖xp − x‖2

Restricted Secant Inequality (RSI): For all x

〈∇f(x), x− xp〉 ≥
µ

2 ‖xp − x‖2
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Restricted secant inequality condition (2/2)
A function f satisfies the RSI condition with constant µ > 0 if

〈∇f(x), x− xp〉 ≥
µ

2 ‖xp − x‖2

Remark 1
SC ⇒ ESC ⇒ WSC ⇒ RSI
Every stationary point is a minimizer
It does not imply that X∗ is a singleton
It does not imply convexity of f
It is difficult to verify this condition

One special case
Let f(x) = g(Ax), where g : Rp → R is a strongly convex function
and A ∈ Rp×p is a matrix, then f satisfies the RSI condition.
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Algorithm description (1/2)

min
x∈Rp

f(x) =
n∑

i=1
fi(x)

Each fi is smooth, f satisfies the RSI condition, and G is connected
It is equivalent to the following constrained optimization problem:

min
x∈Rnp

f̃(x) =
n∑

i=1
fi(xi)

subject to L1/2x = 0np, (⇔ xi = xj , ∀i, j ∈ [n])

where x = (x1, . . . , xn) and L = L⊗ Ip.
The associated augmented Lagrangian function is

A(x,u) = f̃(x) + α

2 ‖L
1/2x‖2 + βu>L1/2x,

where u is the dual variable, α > 0 and β > 0 are parameters to be
designed later.
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Algorithm description (2/2)

A(x,u) = f̃(x) + α

2 x>Lx + βu>L1/2x.

A continuous-time distributed primal-dual algorithm is

ẋ(t) = −∂A(x(t),u(t))
x

= −αLx(t)− βL1/2u(t)−∇f̃(x(t)),

u̇(t) = ∂A(x(t),u(t))
u

= βL1/2x(t), ∀x(0), u(0) ∈ Rnp.

Denote v(t) = L1/2u(t). Then,

ẋ(t) = −αLx(t)− βv(t)−∇f̃(x(t)),

v̇(t) = βLx(t), ∀x(0) ∈ Rnp,
n∑

j=1
vj(0) = 0p.
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Algorithm extension
Special initialization:

ẋi(t) =− α
n∑

j=1
Lijxj(t)− βvi(t)−∇fi(xi(t)),

v̇i(t) =β
n∑

j=1
Lijxj(t), ∀xi(0) ∈ Rp,

n∑
j=1

vj(0) = 0p.

(vi(0) = 0p, ∀i ∈ [n], or vi(0) =
∑n

j=1 Lijxj(0), ∀i ∈ [n])
Arbitrary initialization:

ẋi(t) =− α
n∑

j=1
Lijxj(t)− β

n∑
j=1

Lijvj(t)−∇fi(xi(t)),

v̇i(t) =β
n∑

j=1
Lijxj(t), ∀xi(0), vi(0) ∈ Rp.

(Additional communication of vj(t))
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Convergence analysis

Theorem 1
If each fi is smooth, f satisfies the RSI condition with constant µ > 0,
and G is connected, then

∑n
i=1 ‖xi(t)− PX∗(x̄(t))‖ exponentially

converges to 0, where x̄(t) = 1
n

∑n
i=1 xi(t).

Contribution: exponential convergence without strong convexity, even
without convexity
Potential drawback: the constant µ is used to choose the parameter α
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Algorithm description
Recall continuous-time distributed primal-dual algorithm

ẋi(t) =− α
n∑

j=1
Lijxj(t)− βvi(t)−∇fi(xi(t)),

v̇i(t) =β
n∑

j=1
Lijxj(t), ∀xi(0) ∈ Rp,

n∑
j=1

vj(0) = 0p.

ẏ(t) ≈ y(t+h)−y(t)
h (Euler’s approximation method) ⇒

Discrete-time distributed primal-dual algorithm

xi(k + 1) =xi(k)− h(α
n∑

j=1
Lijxj(k) + βvi(k) +∇fi(xi(k))),

vi(k + 1) =vi(k) + hβ
n∑

j=1
Lijxj(k), ∀xi(0) ∈ Rp,

n∑
j=1

vj(0) = 0p,

where h > 0 is a fixed stepsize.
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Algorithm comparison
Discrete-time distributed primal-dual algorithm

xi(k + 1) =xi(k)− h(α
n∑

j=1
Lijxj(k) + βvi(k) +∇fi(xi(k))),

vi(k + 1) =vi(k) + hβ
n∑

j=1
Lijxj(k), ∀xi(0) ∈ Rp,

n∑
j=1

vj(0) = 0p.

Distributed gradient tracking algorithm

xi(k + 1) =
n∑

j=1
Wijxj(k)− hsi(k), ∀xi(0) ∈ Rp, si(0) = ∇fi(xi(0)),

si(k + 1) =
n∑

j=1
Wijsj(k) +∇fi(xi(k + 1))−∇fi(xi(k)).

(Additional communication of sj(k), and strong convexity is needed to
show linear convergence.)
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Convergence analysis

Theorem 2
If each fi is smooth, f satisfies the RSI condition with constant µ > 0,
and G is connected, then

∑n
i=1 ‖xi(k)− PX∗(x̄(k))‖ linearly converges

to 0, where x̄(k) = 1
n

∑n
i=1 xi(k).

Contribution: linear convergence without strong convexity, even
without convexity
Potential drawback: the constant µ is used to choose the parameter α
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Simulation: settings

Each fi : R 7→ R is non-convex but differentiable and smooth
f(x) =

∑n
i=1 fi(x) satisfies the RSI condition

The optimal set X∗ = [−1, 0]
A ring graph with n = 10 agents
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Simulation: evolutions of residual

Residual: ∑n
i=1 ‖xi(k)− PX∗(x̄(k))‖/

∑n
i=1 ‖xi(0)− PX∗(x̄(0))‖
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(Linear convergence is established.)
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Simulation: evolutions of local primal variables
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Simulation: evolutions of local dual variables
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Conclusions

Problem: distributed optimization

Method: continuous- and discrete-time primal-dual algorithms

Results: exponential/linear convergence under the RSI condition,
which is weaker than strong convexity

Extensions:
Overcoming the potential drawback (the constant µ is used)
Relaxing the RSI condition by the Polyak-Łojasiewicz condition
Considering communication efficiency: compression and
quantization
Studying the scenarios where gradient information is unavaiable
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Thanks for your time!
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