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Distributed optimization

A network_ of agc_ants cooperatively solve a min f(z) = Z fi(@).
global optimization problem, where z€RP

@ each agent ¢ has a local private
objective f;(z)

o all agents collaborate together to find
the solution to minimize f(x)

@ local information exchange via the
underlying communication network

@ An important component of many machine learning techniques
with data parallelism, e.g., deep learning and federated learning
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Applications

SMART FACTORY

(Images are from the Internet.)
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Motivation

Existing algorithms

Continuous- and discrete-time distributed algorithms

Existing result

A standard assumption for proving exponential/linear convergence

of existing distributed algorithms is
strong convexity of the cost functions

Question
Could strong convexity be relaxed?

For example, quadratic functions may be not strongly convex.

Answer in our paper

Yes, it can be relaxed by the restricted secant inequality condition.
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Restricted secant inequality condition (1/2) frry
Let f(z) : RP — R be a differentiable function, f* = mingcgrr f(2),
X* = argmin, gy f(x), and x, is the projection of x onto the set X*.

e Strong Convexity (SC): For all z and v,

1) 2 f(@) + (Vf(@),y - 2) + Llly - all

o Essential Strong Convexity (ESC): For all z and y with z, = yp,

) = f(@) + (VF(@),y =) + Slly — Il
e Weak Strong Convexity (WSC): For all z,

2 F@) + (V@) 2y — ) + Sz, — ]

@ Restricted Secant Inequality (RSI): For all =
K 2
(V@)@ — ap) 2 2, —al
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Restricted secant inequality condition (2/2)

A function f satisfies the RSI condition with constant p > 0 if

(V@) —ap) 2 Sy — o

Remark 1
SC = ESC = WSC = RSI

Every stationary point is a minimizer

It does not imply that X* is a singleton

°
°
@ It does not imply convexity of f

o It is difficult to verify this condition

One special case

Let f(x) = g(Az), where g : RP — R is a strongly convex function
and A € RP*P is a matrix, then f satisfies the RSI condition.
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Algorithm description (1/2)

n

min f(z) = Z fi(z)

P
z€R -

Each f; is smooth, f satisfies the RSI condition, and G is connected
@ It is equivalent to the following constrained optimization problem:

n
min, =) i)
subject to LYz = 0,,, (& zi = z;, Vi, j € [n])
where = (21,...,2,) and L=L ®I,.
@ The associated augmented Lagrangian function is

Al@,u) = f(@) + S L 2| + fu’ L' a,

where w is the dual variable, « > 0 and 8 > 0 are parameters to be
designed later.
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Algorithm description (2/2) fiTH%%

Az, u) = f(x) + %mTLm + Bu' LY.
@ A continuous-time distributed primal-dual algorithm is
= —aLx(t) — BLY?u(t) — Vf(x(t)),
= BL'?x(t), Vx(0), u(0) € R™.

o Denote v(t) = L'/?u(t). Then,
() = —aLa(t) — Bo(t) — V[(=(t)),

o(t) = BLx(t), Va(0) € R™, Zn:vj(o) =0,.
j=1
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Algorithm extension
@ Special initialization:

- QZLM ~ Buslt) — Vilai(1)).

BZLIJ:L‘] , Vx;(0) € RP, ZUJ

(vi(0) = 0p, Vi € [n], or v;(0) = 3_7_; Lijx;(0), Vi € [n])
o Arbitrary initialization:

t) :—OZZLiij BZLUU Vfl(xl( ))
BZwa] , Va;(0),v,(0) € RP.

(Additional communication of v;(t))
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Convergence analysis

Theorem 1

If each f; is smooth, f satisfies the RSI condition with constant u > 0,
and G is connected, then Y 7, ||z;(t) — Px=(z(t))| exponentially
converges to 0, where Z(t) = L 37| 2;(¢).
o Contribution: exponential convergence without strong convexity, even
without convexity

o Potential drawback: the constant p is used to choose the parameter «
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Algorithm description

@ Recall continuous- tlme distributed primal-dual algorithm

== O‘ZLU% — Bui(t) — V fi(zi(t)),
,BZLUQ:J , Vz;(0) € R, f:vj(O) =
j=1

y(t) ~ M (Euler's approximation method) =
@ Discrete-time distributed primal—dual algorithm

zi(k +1) =z ZLU% )+ Bui(k) + V fi(wi(k))),
Ul(k + 1) :Uz(k) + hﬁ Z Lijxj(k)y \V/SUl(O) € Rp, ZU](O) = Op,
=1 '
where h > 0 is a fixed stepsize.
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Algorithm comparison sy

@ Discrete-time distributed primal-dual algorithm

n

xz(k + 1) Zl'z(k) — h(a Z Lijxj(k?) + ,B’Uz(k) + sz(.fz(k‘))),

n

’l)i(k + 1) :’Uz‘(k) + hp Z Lija:j(k), V:c,(O) e RP, En:vj(()) = 0p.
Jj=1 J=1

o Distributed gradient tracking algorithm

rilh 1) =32 Wiy () — hsa(k), Vai(0) € RP, 5:(0) = V £i(:(0)),
j=1

Si(k + 1) = zn: Wij,s'*j(k7) + sz(xz(k + 1)) — sz(wz(k))
j=1

(Additional communication of s;(k), and strong convexity is needed to
show linear convergence.)
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Convergence analysis

Theorem 2
If each f; is smooth, f satisfies the RSI condition with constant u > 0,
and G is connected, then Y7, ||z;(k) — Px«(z(k))| linearly converges
to 0, where Z(k) = 2 7 z;(k).
o Contribution: linear convergence without strong convexity, even
without convexity

o Potential drawback: the constant p is used to choose the parameter «
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Simulation: settings

e Each f; : R+ R is non-convex but differentiable and smooth
o f(x)=>", fi(x) satisfies the RSI condition
@ The optimal set X* = [—1,0]
@ A ring graph with n = 10 agents
9 Loca‘l cost func‘lion of Ag?nl 3 5 ‘Global cos‘l function‘
03 2 1 0 i 2 3 53 2 1 0 1 2 3
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Simulation: evolutions of residual

Residual: 370, [lzi(k) — Px- (2(k))II/ 225 [l2i(0) — Px= (2(0))
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(Linear convergence is established.)
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Simulation: evolutions of local primal variables
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Simulation: evolutions of local dual variables
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Conclusions

@ Problem: distributed optimization
@ Method: continuous- and discrete-time primal-dual algorithms

@ Results: exponential/linear convergence under the RSI condition,
which is weaker than strong convexity

o Extensions:
@ Overcoming the potential drawback (the constant y is used)
@ Relaxing the RSI condition by the Polyak-tojasiewicz condition

o Considering communication efficiency: compression and
quantization

(]

Studying the scenarios where gradient information is unavaiable
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Thanks for your time!
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